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Static Vacuum Solution of Direct Poincar6 Gauge 
Theory in Ten Dimensions with Four External 
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A torsion-free solution of the free gauge field equations of direct Poincar6 gauge 
theory on a ten-dimensional Minkowski space is constructed. This solution 
exhibits nontrivial curvature two-forms, but shaves the metric structure down to 
that of a four-dimensional Minkowski space. Universality of this solution with 
respect to the choice of the free field Lagrangian is established. 

Cur ren t  research  into  the  founda t i ons  o f  e l emen ta ry  phys ica l  processes  
has led  to a s izable  inves tment  in theor ies  where  the d imens ion  of  the  
unde r ly ing  space  is g rea te r  t han  four  ( supe r symmet r i c  theor ies  in ten 
d imens ions ,  str ing theo ry  in 26 d imens ions ,  etc.). Ul t imate  va l ida t ion  o f  
such theor ies  c lear ly  requires  a m e c h a n i s m  or  p r o c e d u r e  for  reconc i l ing  
these  h igher  d i m e n s i o n a l  const ructs  with the  u n a v o i d a b l e  fact  tha t  the space  
o f  c o m m o n  exper ience  is fou r -d imens iona l .  It wou ld  therefore  seem useful  
to demons t r a t e  a specif ic  h igher  d imens iona l  theory  ( t en -d imens iona l  
P o i n c a r 6  gauge  theory)  for  which  exact  so lu t ions  of  the  vacuum field 
equa t ions  l ead  to a met r ic  s t ructure  o f  a f ou r -d imens iona l  Minkowsk i  space.  
Vacuum solu t ions  with this p rope r ty  can then  be  v iewed as an unde r ly ing  
state u p o n  which  mat te r  fields may  be e rec ted  that  will  re ta in  a full  ten- 
d i m e n s i o n a l  in ternal  s t ructure ,  bu t  whose  externa l  a sympto t i c  met r ic  struc- 
ture will r ema in  fou r -d imens iona l .  

1. D I R E C T  P O I N C A R I ~  G A U G E  T H E O R Y  
IN T E N  D I M E N S I O N S  

We star t  with a t en -d imens iona l  M i n k o w s k i  space  M~0 with a g loba l  
coo rd ina t e  cover  { x i l 0 - - i ~ 9 } ,  for which  the line e lement  assumes  the 
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standard form 

9 

ds z = h~ dx ~ dx j = (dx~ 2 -  E (dx~) 2 (1) 
a = l  

The Poincar6 group for Mlo is the 55-parameter Lie group SO( I ,  9) ~ T(10), 
which we will denote by P55- When this group is allowed to act locally, we 
obtain the 45 compensating 1-forms 

W ~ = W' / (x  m) dx ~, 1--- a-<45 (2) 

for the S O ( l ,  9) sector, and the ten compensating 1-forms 

r i= 05~(x") dx j, 0-< i-<9 (3) 

for the translation sector T(10). Altogether, this gives a total of 550 Yang- 
Mills potential functions { W~', 4~j I 0-< i, j -< 9, 1 -< a -< 45) for the local action 
of P55 on Mlo. 

The process for gauging P55 follows the identical pattern for gauging 
P~o that was described by Edelen (1985a-d); simply allow all Latin indices 
to range over 0-9 and all greek indices to range over 1-45. In particular, 
we obtain the ten distortion 1-forms 

B~=dx~+ W H ~ x J + g a  i, 0-<i-<9 (4) 

where the l's constitute a basis for the matrix Lie algebra of  S O ( l ,  9). The 
B's serve to define the fundamental coframe fields and the line element on 
the resulting Riemann-Cartan space U10 by 

dS 2 = Biho B j  = gij dx ~ dx j (5) 

The ten Cartan torsion 2-forms of Ulo have the evaluation 

vZi = D B  i = d B i +  W,~l.~ji ̂  B j, 0 <  i -<9 (6) 

While the 45 curvature 2-forms for the S O ( l ,  9) sector are given by 

O ~ = d W ~ - 2 , ~  ~ ~,,  ^ W v, 1-<a-<45 (7) 

Here, C ~ r  are the structure constants for so( l ,  9), and the corresponding 
components of the Cartan-Killing form on so( l ,  9) are given by 

c ~  : c : ~ c ~  (8) 

Since S O ( I ,  9) is semisimple, the Cartan-Killing form on so( l ,  9) is nonsin- 
gular. 

In the interests of simplicity, we confine the discussion to the free 
gauge field problem for P55. There will therefore be no matter field 
Lagrangian, and the same argument as that used in Edelen (1985a,d) 
indicates that we should also preclude the free P55 gauge field Lagrangian 
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from depending on the components of the Cartan torsion 2-forms. We are 
therefore left with a free field Lagrangian that can only depend on the 
curvature 2-forms of the SO(I,  9) sector. 

The free field Lagrangian must be invariant under the local action of 
P55. Now, the simplest scalar invariant that can be formed from the curvature 
2-forms is 

U=_�88 a~ ~ikz.j,. ~0 ~,~vk,,,,, ,, (9) 

Accordingly, a fairly standard free field Lagrangian is given by 

L = KUB (10) 

where K is a coupling constant and 

B = det(B~) (11) 

so that 

Let us set 

OL OL K U  OB s :o  -oB (12) 

OU 
H~ - (13) 

ooi 

OL 
: KBH~ (14) 

0eTj 
A direct analogy with the analysis given in Edelen (1985a) shows that the 
field equations for the free gauge fields for P55 are 

KU oB S k= OB~k=O (15) 

for the translation-compensating fields, and 

O,(BH~)- W ~ C ~ B H ~ = O  (16) 

for the compensating fields for the SO(I, 9) sector. An obvious rewriting 
of  (16) gives us 

B{OiH~ ~ ~ ij ij 
- W, Cr ~Hv}+H~OiB : 0  (17) 

2. DECOMPOSITION OF M~o AND THE FIELD EQUATIONS 
BY SUBGROUP SPLITTING OF Pss 

The group P55 admits the subgroup inclusions 

S0(1,  9)[> T(10) ~ 50(1,  9) = SO(9) D SO(3) x SO(3) x SO(3) (18) 
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The latter group SO(3) x SO(3) • SO(3) engenders a natural decomposition 
of M~o in terms of isotropic three-dimensional spaces that are the domains 
of action of  each of the SO(3) factors. It is therefore useful to introduce 
new coordinate labels by 

{xi]O_< i -~9}={x ~ ~--x3(k-l)+a I Xk-- l - - a ,  k-<3} (19) 

Thus, {x~,[ 1-< a-< 3} are Cartesian coordinates on the kth isotropic three- 
dimensional Euclidean space on which the kth copy of SO(3) acts. 

It is natural to look for solutions of the field equations that are consistent 
with this decomposition of M~o. Since only SO(3) • SO(3) • SO(3) is invol- 
ved, a necessary requirement is that all of  the compensating fields for the 
translation sector vanish: 

q~(xm) = 0, O<--i,j<--9 (20) 

Let us order the generators of so(1,9) so that the first nine generate 
so(3) x so(3) x so(3). We must then require that 

W~=0 ,  10-<a-<45 (21) 

In view of the direct product structure that we are now dealing with, it is 
convenient to introduce an alternative designation for the first nine W's, 

{W'~[l<--a<--9}={WA[k]=W3(k-l)+A]l<--a,k<--3} (22) 

Thus, wa[1] are the compensating 1-forms for the local action of SO(3) 
on the first three-dimensional space with coordinates Xl, wa[2]  are com- 
pensating l-forms for the local action of  SO(3) on the second three- 
dimensional space with coordinates x~, etc. 

This notation allows us to rewrite the distortion 1-forms as 

{Bi]0_< i - 9 }  = {B ~ Ba[k][1-< a, k-<3} (23) 

where 

Ba[k] = dx~ + wA[k]eAbaX b (24) 

and we have made use of the representation for the generating matrices of 
so(3) in terms of the standard three-component permutation symbols. The 
line element on Ulo thus becomes 

3 
dS 2 = (dx~ 2 -  }~ B~[k]~obBb[k] (25) 

k = l  

In like manner, let us set 

{O~ll <--a<-- 9}={Oa[k] = 03(k-')+AII ~--A, k--<3} (26) 
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Since we are dealing with so(3)x so(3)x so(3), and all of the W e vanish 
for a > 9, the expressions for the surviving curvture 2-forms simplify 
significantly, 

We then have 

OA[k] = dWa[k]+�89 A WC[k] (27) 

3 
4 U =  E oA[k]6ABO~n[k] h'mhjn (28) 

k=l  

and hence the nonzero field intensities are 

OU 
H~[k] = O0~[k] (29) 

When these evaluations are substituted into the field equations given in the 
previous section, there is also a drastic simplification. The only field 
equations not identically satisfied are 

OB 
U ~ k = 0  , O<-i,k<-9 (30) 

and 

B{O,H~[k] ~ c o o - Wi [k]eBA Hc}+HA[k]O~B = 0  (31) 

0-- j -< 9; 1 -< A, k -  3), where we have used the standard representation for 
the structure constants of so (3) in terms of the three-component permutation 
symbols. We therefore have a total of 190 field equations for the determina- 
tion of the 90 field variables Wia[k](xm), and the problem is highly over- 
determined at this level, where the nonzero W's are allowed to depend on 
all ten independent variables. We note, however, that all of these equations 
can be satisfied if the ten by ten matrix with entries ((B~)) has rank less 
than 9 (i.e., B-= O, OB/OB~ = 0). 

3. TORSION-FREE SOLUTIONS OF THE FIELD EQUATIONS 

We first note that SO(3) and SU(2) have the same Lie algebras, and 
hence solutions to the free field equations for local action of SU(2) should 
prove to be useful in constructing solutions to the field equations just given. 
In fact, if the indices i and j  are appropriately restricted in (31), the quantities 
within the curly brackets are exactly the field equations for free SU(2) 
compensating fields. Now, there are many known SU(2) solutions that 
could be used in various ways. The one we wish to concentrate on is the 
static "magnetic mpnopole"  solution of Yang and Wu (1969). The restriction 
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to the appropriate three-dimensional "factor"  spaces of M10 that comes 
from the so(3)• so(3)• so(3) subgroup of P55 can be achieved by setting 

Wa[k]  dxZ A b - 2  (32) = e abXkrk 

that is, each WA[k] is a 1-form on the three-dimensional space with 
coordinates {x~,] 1 -< a -< 3} that define the Yang-Wu solution for SU(2). 

The first thing to be done is to substitute (32) into (24) in order to 
determine the 1-forms Ba[k].  As a prelude to this, we first obtain the 
evaluation 

p a [ k  ] = w A [ k ] e a b a x  b = X___~ drk -- dx~, (33) 
rk 

since it will also be useful later. Thus, since equations (24) and (33) show 
that B"[k]  = dx~, + p a[k], we have the explicit evaluations 

B~[k ] = x~, drk (34) 
rk 

Now, only one of each of the triplets of 1-forms {Bl[k], B2[k], B3[k]} is 
independent, and hence the ten by ten matrix with entries B~ has rank 4, 

rank(Bj) = 4 (35) 

We therefore have 

B = det(B~) = 0 (36) 

and each cofactor of the matrix ((Bj)) also vanishes. This shows that 

OB/OB~=O (37) 

and hence the field equations (30) and (31) are satisfied throughout Mmo. 
In fact, B, its spatial derivatives, and the terms in the curly brackets in (31) 
each vanish throughout Mlo, so one could say that we have "doubly solved" 
the field equations. 

The next thing we establish is that the solution just obtained makes U~o 
torsion-free. In order to see this, we go back to the definition of  the Cartan 
torsion: 

~ , i = D B i = d B i +  W,~l ~Ji ̂  B j, 0<i-<9_ (38) 

These decompose in the same way to yield ~0= 0 and 

"~a[k] = dBa[k]+  wA[k]eAb a ̂  Bb[k] (39) 

Use of equations (33) and (34) easily shows that 

drk drk 
Wa[k]eAb a ^ Bb[k] = p~[k] ^ - - = - - d X ~ k  ^ - -  (40) 

rk rk 
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while (33) shows that dB"[k] has the same evaluation with the opposite 
sign. Accordingly, (39) gives s =0,  and we have the desired result 

l~i=0, 0<-i<-9 (41) 

It is easily seen that the curvature 2-forms OA[k] do not vanish 
throughout U10, and hence this ten-dimensional space is torsion-free with 
a nontrivial curvature structure. On the other hand, we have the alternative 
evaluation (Edelen, 1985a) 

~,a[k]  = Oa[k]eAbaX b = O~[k]xbk = 0 (42) 

Accordingly, the matrix of curvature 2-forms on each of the three three- 
dimensional isotropic subspaces has the corresponding three-dimensional 
radius vector in its kernel. Each three-dimensional isotropic subspace thus 
has vanishing radial curvature, so that the support of the curvature matrix 
is purely rotational. In fact, the rotational curvature is so great that all 
directions from the origin in each three-dimensional isotropic space can be 
identified relative to the metric geometry of the resulting space-time, as we 
shall see. 

4. DIMENSION SHAVING AND THE RESULTING 
FOUR-DIMENSIONAL MINKOWSKI SPACE 

The crucial information is provided by substituting the evaluations 
given by (34) into the line element for U~o in the form given by equation (25): 

d S  2 = ( d x ~  2 - ( d r , )  2 - ( d r 2 )  2 - ( d r 3 )  2 (43) 

Since this is the line element of a four-dimensional Minkowski space with 
local coordinates {x ~ r~, r2, r3}, the space U~o has been shaved down to a 
four-dimensional Minkowski space as far as its metric geometry is concer- 
ned. On the other hand, Ulo has a nontrivial curvature structure, as we have 
already seen, but the support of this curvature is internal as far as the metric 
structure is concerned. Indeed, we may view (43) as the statement that only 
the radial separation in each of the three isotropic three-dimensional spaces 
of U~o contributes to the resulting metric structure, while the angular 
separations at the origins of each of the three isotropic three-dimensional 
subspaces of Ulo are "rolled up"  by the large, radially orthogonal matrices 
of curvature 2-forms. The curvature structures of U~0 thus become curvature 
structures of "pinched off" internal projective spaces which do not leave 
footprints that can be detected by the resulting line element of the flat 
Minkowski space given by (43). There are several alternative interpretations 
of this result that readers can construct for themselves. Suffice it to say at 
this juncture that we have exhibited a ten-dimensional theory for which an 



648 Edelen 

exact solution of the free field equations with nontrivial curvatures serves 
to shave the metric structure down to that of  a four-dimensional Minkowski 
space. 

5. U N I V E R S A L I T Y  OF THE D I M E N S I O N - S H A V I N G  S O L U T I O N  

The way we stumbled on the dimension-shaving solution was by using 
the free field Lagrangian given by (9) and (10) and then noting that the 
quantities inside the curly brackets in (31) are the SU(2) field equations. 
What makes the solution work, however, is the fact that the matrix with 
entries Bj has rank 4. It thus turns out that surviving field equations (30) 
and (31) are satisfied no matter what invariant scalar is used for U, because 
we have B = 0 and O B / a B ~  = O. The dimension-shaving solution is therefore 
universal with respect to the choice of  the free field, P55-invariant Lagrangian 
that is independent of  the components of  the Cartan torsion. We therefore 
have dimension having for any free field Lagrangian of the form 

L = K V ( O ~ ) B  (44) 

where Vis an arbitrary, P55-invariant, scalar-valued function of its indicated 
arguments. In particular, we can have 

oz j ki  91_ Jr" V =  K o +  KlOij l~kh K 2 U  " ' "  (45) 

where the K ' s  are coupling constants. The first two terms in (45) give the 
P55 analog of the Einstein-Hilbert  Lagrangian, while U is the P55 analog 
of  the Lagrangian for electromagnetism that is so often used in gauge theory. 

Universality of  the dimension-shaving, free field solution is of  particular 
importance in the larger context in which matter field Lagrangians are 
included. The analysis of  such problems can proceed by allowing the free 
field Lagrangian to have the general form given by (44), and then determin- 
ing the shape of the function V in order to model specific structures. Once 
V has been determined in this way, soliton-like solutions for the matter 
fields should lead to asymptotically free gauge fields, and these in turn will 
contain remnants of  the universal dimension-shaving solution provided the 
SO(3) x SO(3) • SO(3) symmetry is not broken. There is therefore a reason- 
able prospect of  obtaining ten-dimensional descriptions of  matter that 
induce an asymptotic four-dimensional metric structure. 
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